Synthesis and characterization of indium intercalation compounds of molybdenum diselenide, In_xMoSe_2 ($0 \le x \le 1$)

S. K. SRIVASTAVA, B. N. AVASTHI

Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India

The present work deals with the synthesis, structure and properties of indium intercalated compounds of molybdenum diselenide, $In_x MoSe_2$ ($0 \le x \le 1$). X-ray analysis shows that the intercalated compounds, $In_{1/3}MoSe_2$ like the host. 2H-MoSe₂ also possess a hexagonal symmetry with a small increase in *c* lattice parameter. However, a new phase appeared in $In_{2/3}MoSe_2$ and $InMoSe_2$ diffractogram due to In_7Se_6 , In_2Se_3 , $In_xMo_6Se_8$ or $In_{3.33}Mo_{15}Se_{19}$. Room temperature magnetic susceptibility, thermoelectric power experiments and two probe conductivity measurements in the temperature range 25 to 300°C indicated that intercalated compounds also exhibit p-type diamagnetic semiconducting behaviour similar to the host $MoSe_2$ and results are explained on the basis of existing band models. Thermal stability behaviour of these compounds has also been studied and X-ray analysis of the oxidized product has also been made.

1. Introduction

During the past few years, there has been a great interest in layered compounds consisting of group IVB and VB and VIB transition metal dichalcogenide [1–13]. Recent applications includes intercalation compounds [14–16], high pressure-high temperature lubricant [15], long-life photo electrochemical solar cell [17], solid state electrolyte batteries [18] and in the field of catalysis [19].

Molybdenum diselenide, MoSe₂, is one such representative which possesses a characteristic layer type of structure and is a most promising material for modern use [5]. This layer type structure in $MoSe_2$ facilitates the process of insertion or intercalation by foreign metal atoms allowing the structure and electronic behaviour of the host to be changed. Earlier studies have shown that MoSe₂ could successfully be intercalated with alkali and alkaline earth metals [20-22]. Recently, we reported for the first time the synthesis of intercalation compounds of MoS₂, WS₂ and WSe₂ with the post transition metal indium. These results were found to be very interesting and encouraging and therefore we extended our studies on isostructural MoSe₂ compounds. In this paper, we report synthesis of indium intercalation compounds of molybdenum diselenide and its characterization by X-ray analysis for structure determination and particle size calculation, room temperature magnetic susceptibility and thermoelectric power experiments, conductivity measurements in the temperature range (25 to 300° C), thermal stability behaviour in the air atmosphere and X-ray analysis of the oxidized products etc.

2. Experimental details

2.1. Sample preparation

In the present study the $In_x MoSe_2$ (0 < $x \le 1$) compounds were synthesized directly from the elements

that already reported for $In_x WS_2$ [9] and $In_x MoS_2$ [10] compounds. Appropriate amounts of the molybdenum metal powder (99.9% pure), selenium powder (99.9% pure) and semiconducting grade indium metal were weighed accurately to give the desired composition. The mixture was then placed inside a quartz tube and vacuum sealed. The initial reaction was carried out at 750° C for a period of 40 h. A loose powder product resulted, having a considerably greater volume than the reacting elements, and this was well mixed by mechanical shaking. Subsequently, a final reaction was carried out at 1000° C in the same sealed tube for 40 h followed by slow cooling to room temperature.

and the method of preparation was quite similar to

2.2. Characterization

Powder diffraction pattern of the samples were taken on a DRON-I USSR strip chart mV recorder (model COO No 1500) using MoK α radiation. Fast scan of 2° min⁻¹ were recorded to examine the material for the possible presence of extra phases. The crystallite size was determined by Sherrer's method and a shape factor of 1.00 was applied.

Room temperature magnetic susceptibility was obtained using a Faraday balance with Caha RG electrobalance at 3×10^{-3} T field strength. The type of conductivity was determined by conventional thermoelectric power experiments. Conductivity measurements were made using a two-probe technique on a compressed circular pellet in the temperature range 300 to 600 K. Thermogravimetric analysis was made at atmospheric pressure up to 1000°C in MOM derivatograph (Hungary model, Paulik-Paulik). A linear heating rate of 10° C min⁻¹, sensitivity of DTA = $\frac{1}{10}$ and TG = 200 mg, were maintained in all the samples. The oxidized products were also identified by X-ray analysis. InMoSe₂

Figure 1 X-ray diffractograms of $In_x MoSe_2$ ($0 \le x \le 1$) compounds.

3. Results and discussion

Fig. 1 shows the X-ray diffractogram of In, MoSe₂ $(0 \le x \le 1)$ compounds. It appeared from the diffractograms that there exists quite a good resemblance between the host 2H-MoSe₂ and In_{1/3}MoSe₂ intercalation compound. This suggested that the arrangement of molybdenum and selenium remains almost the same even upon indium intercalation. Thus the $In_{1/3}MoSe_2$ compound may be regarded as possessing the space group P6₃/mmc and a layer stacking sequence as given by BCB/AbA as in the host 2H-MoSe₂. The 001 reflections in MoSe₂ and In_{1/3}MoSe₂ are of very high intensity indicating thereby a strong orientation along the c axis. However, further intercalation of indium in $MoSe_2$ for example $In_{2/3}MoSe_2$ and InMoSe₂ produced a sharp decrease in the intensity of 001 reflections. Though intensity of 101 lines remained constant in $MoSe_2$ and $In_{1/2}MoSe_2$, it increased significantly for In2/3 MoSe2 and InMoSe2 compounds. The diffractograms of all these In, MoSe₂ $(0 \le x \le 1)$ compounds were also thoroughly scan-

ned in order to ascertain the presence of any phases due to free indium, molvbdenum or binary indium or molybdenum selenides e.g. InS, In₂Se₃, In₇Se₆, $MoSe_2$, $MoSe_4$, $Mo_{15}Se_{19}$ or ternary compounds e.g. $In_x Mo_6 Se_8$ and $In_{3,33} Mo_{15} Se_{19}$. Few new phases were seen to have appeared in the diffractograms of In_{2/3}MoSe₂ and InMoSe₂ compound. Thus the intensity of the peak with d = 0.3085 and 0.2840 nm in host MoSe₂ and In_{1/3}MoSe₂ is extremely low but it increases significantly in In_{2/3}MoSe₂ and InMoSe₂ compounds and may correspond to In₆Se₇ (d = 0.3068 nm) [23] in the former and to In_7Se_6 (d = 0.2840 nm) [23] and In_{3.33}Mo₆Se₈ (d = 0.2836 nm)[24] in the latter, respectively. In addition, three new lines at 0.2084, 0.2040 and 0.1710 nm also appeared in the diffractograms of In2/3 MoSe2 and InMoSe2 which were found to be absent in the host MoSe₂ and $In_{1/3}MoSe_2$ compounds. The line at 0.2084 nm may be due to $In_{3,33}Mo_{15}Se_{19}$ (d = 0.2078 nm) [24] or $In_x Mo_6 Se_8 (d = 0.2075 nm) [25]$ whereas the other two lines may correspond to $In_{x}Mo_{6}Se_{8}$ (d = 0.2042 nm)

TABLE 1	I Indexing c	f diffraction	pattern fo	r In _x MoSe ₂	(0	\leq	х	\leq	1)	compounds
---------	--------------	---------------	------------	-------------------------------------	----	--------	---	--------	----	-----------

MoSe ₂		In _{1/3} MoSe ₂		In _{2/3} MoSe ₂		InMoSe ₂		
hkl	<i>d</i> (nm)	I/I_1	<i>d</i> (nm)	<i>I</i> / <i>I</i> ₁	<i>d</i> (nm)	I/I_1	\overline{d} (nm)	<i>I</i> / <i>I</i> ₁
001								
002	0.6448	100	0.6451	100	0.6453	100	0.6453	100
004	0.3225	30	0.3230	47	0.3231	50	0.3231	40
006	0.2148	30	0.2153	55	0.2153	40	0.2153	40
008	0.1612	55	0.1615	85	0.1616	80	0.1616	80
hol								
103	0.2368	30	0.2364	30	0.2368	85	0.2367	80
105	0.1910	30	0.1908	30	0.1910	60	0.1911	90
101	0.1084	30	0.1085	20	0.1086	15	0.1087	40
203	0.1352	< 5	0.1350	5	0.1351	10	0.1352	30
205	0.1246	< 5	0.1244	< 5	0.1244	15	0.1244	25
h00								
100	0.2839	5	0.2839	10	0.2839	10	0.2839	30
200	0.1422	5	0.1422	15	0.1422	15	0.1422	30
hk0								
210	0.1073	15	0.1076	15	0.1074	25	0.1074	25
118	0.1150	10	0.1151	15	0.1151	20	0.1150	40
Other line	es							
					0.3085	45	0.3085	65
					0.2840	25	0.2848	28
					0.2080	45	0.2083	65
					0.2043	20	0.2048	40
					0.17096	15	0.1709	25

[25] and In_2Se_3 (d = 0.1712 nm) [26] respectively. Therefore it may be concluded that $In_{1/3}MoSe_2$ retains the same hexagonal structure as $MoSe_2$, whereas new phases appeared in the case of $In_{2/3}MoSe_2$ and $InMoSe_2$ compounds. The d values for In_xMoSe_2 ($0 \le x \le 1$) compounds are calculated from the Fig. 1 and are recorded in Table I.

The unit cell parameters for hexagonal MoS_2 are given in Table II. The data compare well with those of Al-Hilli and Evan [27] (a = 0.3299 nm, $c = 2 \times$

0.6489 nm, c/a = 1.9608, $V = 0.121940 \text{ nm}^3$). A small increase in *c*-lattice parameter in $\text{In}_{1/3}\text{MoSe}_2$ compound was produced unlike its alkali or alkaline earth metal analogue [20–22] where a relatively larger, increase in the *c* parameter was observed. However, the structural studies on some other layered transition metal dichalcogenides e.g. $\text{Al}_x \text{TaS}_2$, $\text{Al}_x \text{NbSe}_2$ [29], $2n_x \text{TaS}_2$ [30], $\text{In}_x \text{WS}_2$ [9], $\text{In}_x \text{MoS}_2$ [10] and some other intercalation compounds e.g. $\text{Li}_x \text{YCl}$, $\text{Li}_x \text{GdCl}$ [31] revealed that the process of intercalation does

Figure 2 Temperature variation of conductivity for In_xMoSe_2 ($0 \le x \le 1$) compounds ($\odot In_{2/3}MoSe_2$, $\Box In_{1/3}MoSe_2$, $\bullet InMoSe_2$, $\odot MoSe_2$).

Figure 3 Thermograms of In_x -MoSe₂ ($0 \le 1 \ x \le 1$) compounds.

not necessarily produce a characteristic increase in c-parameter and is thought to be dependent on the size and concentration of the guest atom and the structure of the host crystal as well. The calculation of the crystallite size in MoSe₂ and In_{1/3}MoSe₂ compounds confirmed that there exists an isotropy towards the crystallite size (Table II).

Room temperature magnetic susceptibility and thermoelectric power experiments and conductivity

measurements in the temperature range 25 to 300° C confirmed that all these $In_x MoSe_2$ ($0 < x \leq 1$) compounds are n-type diagmagnetic semiconductors, Fig. 2 (Table II), a behaviour contrary to its metallic and paramagnetic nature for its alkali and alkaline earth metal analogues [20–22]. Therefore it may be concluded that a charge-transfer rigid-band model is not applicable in all the cases since it assumes that electrons transferred from the intercalate atoms are delocalized

TABLE II X-ray data and other characteristic features of $In_x MoSe_2$ ($0 \le x \le 1$) compounds

<u></u>	MoSe ₂	In _{1/3} MoSe ₂	In _{2/3} MoSe ₂	InMoSe ₂
Lattice Parameter				
a (nm)	0.3280	0.3280		
c (nm)	2×0.6447	2×0.6570	-	-
c/9	0.196 55	0.19685	-	-
$V(nm)^3$	0.12013	0.12292	_	-
Crystallite size (nm)	19.0	22.0	_	-
Magnetic susceptibility	Diamagnetic	Diamagnetic	Diamagnetic	Diamagnetic
Seebeck coefficient $S_{2\infty}^{0}$ (V°C) ⁻¹	+10.11	+0.544	+ 0.880	0.540
Conductivity 25° C (cm) ⁻¹	2.7×10^{-4}	1.6×10^{-7}	1.35×10^{-3}	4.5×10^{-7}

Figure 4 X-ray diffractograms for oxidized products of $In_x MoSe_2$ ($0 \le x \le 1$) compounds.

in the conduction band of the host crystal [1]. A behaviour similar to our case has also been observed by other workers on some other transition metal dichalcogenides, where the host crystal remained a semiconductor even upon intercalation. Thus Yacobi *et al.* [32, 33], on the basis of their studies on absorption edge measurement on $N_x^I ZrS_2$ and $M_x^I HfS_2$

TABLE III X-ray data for the oxidized products

 $(M^1 = Cu, Fe, 0.22 \le x)$, concluded that the intercalated atoms here might be regarded as analogous to deep level impurities leading thereby to an additional energy level near the top of the valency band or alternatively it may be due to the modification of the energy band structure of the host crystal due to interactions between the intercalate and sulphur atoms. According to Rouxel [34], in certain cases the electrons given up by the intercalate atoms may get trapped in certain sites rather than being delocalized in the conduction band of the host crystal. Trichet et al. [35], from their studies on $M_x ZrS_2$ (M = Fe, Co, Ni), concluded that these compounds retain the semiconductor behaviour even upon intercalation. Thus it appears that there are two or more classes of intercalation compounds where the behaviour of intercalate valency electrons is quite different.

Fig. 3 shows the thermograms of In MoSe, $(0 \le x \le 1)$ compounds in air. It is evident from the thermograms of MoSe₂ that there exist two distinct peaks. The first shallow exothermic peak at $\simeq 525^{\circ}$ C is due to its oxidation and a sharp weight loss in TG corresponding to the formation of MoO₃ was simultaneously observed, the presence of which was also confirmed from the X-ray analysis of the oxidation product [36] (Fig. 4). A second endothermic peak appeared at $\approx 760^{\circ}$ C due to melting of MoO₃ and therefore a weight loss in TG was observed due to its evaporation. Thermograms in case of In_{1/3}MoSe₂ and $In_{2/3}MoSe_2$ showed the presence of only broad exothermic peak at 450 and 420°C respectively, whereas peaks became flatter in InMoSe₂. Though TG in all the cases showed a weight loss due to the oxidation and was found to decrease with increasing indium content in MoSe₂. It is, however, interesting to note here that the melting of these compounds did not take place even up to 1000° C. Such an observation has led to the conclusion that the pure $In_x MoSe_2$ ($0 \le x \le 1$)

MoSe ₂		$In_{1/2}MoSe_2$		In _{2/2} MoSe ₂		InMoSe ₂		
<u>d (nm)</u>	<i>I/I</i> 1	<i>d</i> (nm)	<i>I/I</i> ₁	<i>d</i> (nm)	<i>I</i> / <i>I</i> ₁	d (nm)	<i>I</i> / <i>I</i> ₁	
0.6907	30	0.4769	72	0.4713	50	0.4713	23	
0.3812	10	0.4078	88	0.4038	72	0.4038	29	
0.3461	75	0.3577	43	0.3579	34	0.3577	15	
0.3385	< 5	0.3363	64	0.3363	59	0.3363	15	
0.3002	< 5	0.3069	45	0.3069	29	0.3069	15	
0.2594	< 5	0.2937	47	0.2933	82	0.2927	100	
0.2310	100	0.2729	40	0.2723	75	0.2559	45	
0.1983	5	0.2297	24	0.2538	29	0.2523	39	
0.1822	< 5	0.2109	28	0.2109	22	0.2109	13	
0.1760	< 5	0.2007	24	0.2007	16	0.2007	13	
0.1592	5	0.1794	100	0.1783	100	0.1790	79	
0.1574	5	0.1424	24	0.1522	36	0.1528	40	
0.1501	< 5							
0.1479	< 5							
0.1434	5							
0.1387	10							
0.1380	< 5							
0.1272	< 5							
0.1198	< 5							
0.1149	< 5							
0.1103	< 5							
0.0991	< 5							

intercalation compound does not contain any extra molybdenum selenide phases e.g. $MoSe_2$, Mo_3Se_4 etc., which upon oxidation must have formed MoO_3 and corresponding sharp endothermic peak due to its melting should have appeared in the thermograms.

Fig. 4 shows the X-ray diffractograms of the In_xMoSe_2 ($0 \le x \le 1$) oxidation products and the interplaner distance, d, along with their intensity are recorded in Table III. It may be noted here that the peaks initially present in MoSe₂ oxidation product i.e. MoO₃ almost disappeared and new *d*-lines were set in for $In_x MoSe_2$ ($0 \le x \le 1$) oxidized product. The d values in $In_x MoSe_2$ ($0 \le x \le 1$) oxidation products were also thoroughly scanned for all other possible phases e.g. InO, MoO₃, In₂MoO₆, In₂(MoO₄)₃ etc. and were found to be absent. An interesting feature in the diffractograms here is the remarkable resemblance excepting the peaks which appeared at 0.25386, 0.152 28 nm and was due to the appearance of a new In_2O_3 phase (0.2529, 0.1525 nm) [37] or perhaps for $In_x Mo_6 Se_8$, $In_{333} Mo_{15} Se_{19}$ oxidized products. This further strengthens our conclusion, inferred from the X-ray studies of the pure $In_x MoSe_2 (0 \le x \le 1)$ compounds, that a new phase appeared in the diffractograms of In_{2/3}MoSe₂ and InMoSe₂ due to In₇Se₆ or In₂Se₃.

References

- 1. J. A. WILSON and A. D. YOFFE, Adv. Phys. 19 (1969) 169.
- F. JELLINEK, Ark. Kemi. 20 (1963) 447, MTP Int. Rev. Sci. (Inorg. Chem. Ser.) 5 (1972) 527.
- G. V. SUBBA RAO and C. S. SUNANDANA, in "Preparation and Characterization of Materials", edited by J. M. Honing and C. N. R. Rao (Academic, London, 1981) p. 269.
- A. D. YOFFE, in "Physics and Chemistry of Electrons and Ions in Condensed Matter", edited by J. A. Acrivos *et al.*, (Reidel, Dordrecht, 1984), p. 437.
- S. K. SRIVASTAVA, B. N. AVASTHI and S. BASU, J. Sci. Ind. Res. 41 (1982) 656.
- 6. Idem., Mater. Lett. 1 (1983) 178.
- S. K. SRIVASTAVA, B. N. AVASTHI and S. BASU, J. Mater. Sci. Lett. 3 (1984) 313.
- S. K. SRIVASTAVA, B. N. AVASTHI and B. K. MATHUR, *ibid.* 3 (1984) 213.
- S. K. SRIVASTAVA and B. N. AVASTHI, Syn. Metals 10 (1985) 213.

- 10. Idem., Syn. Metals 11 (1985) 193.
- 11. Idem., J. Mater. Sci. 20 (1985) 3801.
- 12. Idem., J. Less Common Met. 124 (1986) 85.
- 13. S. K. SRIVASTAVA, Mater. Res. Bull. (to be published).
- F. R. GAMBLE and T. H. GEMBALL, in "Treatise on Solid State Chemistry", Vol. 3, edited by N. B. Hannay, (Pergamon, New York, 1976) p. 89.
- G. V. SUBBARAO and M. W. SCHAFER, in "Intercalated Layered Materials", edited by F. Levy (Reidel, Dorecht, 1979) p. 99.
- 16. J. ROUXEL, in "Intercalated Layered Materials", edited by F. Levy (Reidel, Dordrecht, 1979) p. 201.
- R. SCHOLLOHORN, in "Inclusion Compounds", Vol. I, edited by J. L. Atwood, J. E. D. Davtes and D. D. Mac -Micol (Academic Press, London, 1984), p. 249.
- 18. H. TRIBUTSCH, J. Electrochem. Soc. 125 (1978) 1085.
- 19. M. S. WHITTINGHAM and A. J. JACOBSON, in "Intercalated Chemistry" (Academic, New York 1982).
- 20. O. WEISSER and S. LANDA, "Sulphide Catalysts, their Properties and Applications" (Pergamon, Oxford) 1973.
- 21. W. RUDORFF, Angew Chem. 71 (1959) 457.
- 22. Idem., Chimia 19 (1965) 489.
- W. RUDORFF and W. OSTERTAG, Proceedings Conference Rare Earth Research 4th Phoesix, Aeizond, 1965, p. 117-24.
- R. CHEVREL, M. SERGENT, B. SEEBER,
 Ø. FISCHER, A. GRÜTTNER and K. YVON, Mater. Res. Bull. 14 (1979) 567.
- J. M. TARASCON, F. J. DISALVO, D. W. MURPHY,
 G. HULL and J. V. WASZCZAK, *Phys. Rev. B* 29 (1984) 172.
- 26. JCPDS, Powder Diffraction File, (20-492) 1967.
- 27. A. A. AL-HILLI and B. L. EVAN, J. Cryst. Growth 15 (1972) 93.
- 28. S. KORERTS, Acta Cryst. 16 (1963) 432.
- 29. J. M. VAN DEN BERG VOORHOEVE, J. Less Common Met. 26 (1972) 399.
- J. K. FORD, G. MAYER and J. D. CORBETT, Inorg. Chem. 23 (1984) 2094.
- B. G. YACOBI, F. W. BOSWELL and J. M. CORBETT, J. Phys. C. Sol. State Phys. 12 (1979) 1033.
- 32. Idem., Mater. Res. Bull. 14 (1979) 1033.
- 33. J. ROUXEL, ibid. 13 (1978) 1425.
- 34. L. TRICHET, J. ROUXEL and M. POUCHARD, J. Solid State Chem. 14 (1975) 283.
- 35. JCPDS, Powder Diffraction File, (5-513) 1969.
- 36. JCPDS, Powder Diffraction File, (6-416) 1967.

Received 16 February and accepted 14 June 1988